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OBJECTIVE OF COMPUTATIONAL AERODYNAMICS

1. Capability to predict the flow past an airplane in different flight regimes

• take off

• cruise (transonic)

• flutter

2. Interactive design calculations to allow immediate improvement

3. Automatic design optimization
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AERODYNAMIC DESIGN METHODS

1945 LIGHTHILL (Conformal Mapping, Incompressible Flow)

1965 NIEUWLAND (Hodograph, Power Series)

1970 GARABEDIAN - KORN (Hodograph, Complex Characteristics)

1974 BOERSTOEL ( Hodograph)

1974 TRENEN (Potential Flow, Dirichlet Boundary Conditions)

1977 HENNE (3-D Potential Flow, Based on FLO22)

1985 VOLPE-MELNIK (2-D Potential Flow, Based on FLO36)

1979 GARABEDIAN - McFADDEN (Potential Flow, Neuman Boundary Conditions, Iterated

Mapping)

1976 SOBIECZI (Fictitious Gas)

1979 DRELA - GILES (2-D Euler Equations, Streamline Coordinates, Newton Iteration)
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TRADITIONAL APPROACH TO DESIGN OPTIMIZATION

The simplest approach to optimization is to define the geometry through a set of design

parameters, which may, for example, be the weights αi applied to a set of shape functions

bi(x) so that the shape is represented as

f(x) =
∑

αibi(x).

Then a cost function I is selected. The sensitivities ∂I
∂αi

may now be estimated by making

a small variation δαi in each design parameter in turn and recalculating the flow to obtain

the change in I. Then
∂I

∂αi
≈
I(αi + δαi)− I(αi)

δαi
.

The gradient vector ∂I
∂α

may now be used to determine a direction of improvement.
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The simplest procedure is to make a step in the negative gradient direction by setting

α
n+1
= α

n − λδα,

so that to first order

I + δI = I −
∂IT

∂α
δα = I − λ

∂IT

∂α

∂I

∂α
.
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DISADVANTAGES

The main disadvantage of this approach is the need for a number of flow calculations

proportional to the number of design variables to estimate the gradient. The computational

costs can thus become prohibitive as the number of design variables is increased.
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GENERAL FORMULATION OF THE ADJOINT APPROACH TO
OPTIMAL DESIGN

The progress of the design procedure is measured in terms of a cost function

I = I (w,F) ,

where w are the flow-field variables and F is the location of the boundary.

A change in F results in a change

δI =

[
∂IT

∂w

]
I

δw +

[
∂IT

∂F

]
II

δF, (3)

in the cost function. 1

1the subscripts I and II are used to distinguish the contributions due to the variation δw in the flow solution from the change
associated directly with the modification δF in the shape
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The governing equations of the flow field

R (w,F) = 0. (4)

which express the dependence of w and F are introduced as a constraint within the

flow-field domain D. Then δw is determined from the equation

δR =

[
∂R

∂w

]
I

δw +

[
∂R

∂F

]
II

δF = 0. (5)

Next, introducing a Lagrange Multiplier ψ, we have

δI =
∂IT

∂w
δw +

∂IT

∂F
δF − ψ

T

([
∂R

∂w

]
δw +

[
∂R

∂F

]
δF

)

=

{
∂IT

∂w
− ψ

T

[
∂R

∂w

]}
I

δw +

{
∂IT

∂F
− ψ

T

[
∂R

∂F

]}
II

δF. (6)
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Choosing ψ to satisfy the adjoint equation

[
∂R

∂w

]T
ψ =

∂I

∂w
(7)

The first term is eliminated, and we find that

δI = GδF, (8)

where

G =
∂IT

∂F
− ψ

T

[
∂R

∂F

]
.

Once equation (8) is established, an improvement can be made with a shape change

δF = −λG

where λ is positive, and small enough that the first variation is an accurate estimate of

δI. The variation in the cost function then becomes

δI = −λGTG < 0.
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ADVANTAGES

• Equation (8) is independent of δw. Hence, the gradient of I with respect to an

arbitrary number of design variables can be determined without the need for additional

flow-field evaluations.

• The computational cost of a single design cycle is roughly equivalent to the cost of two

flow solutions since the the adjoint problem has similar complexity.

• When the number of design variables becomes large, the computational efficiency of

the control theory approach over traditional approach, which requires direct evaluation

of the gradients by individually varying each design variable and recomputing the flow

field, becomes compelling.
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DESIGN USING THE EULER EQUATIONS

Denote the Cartesian coordinates and velocity components by x1, x2, x3 and u1, u2, u3,

and use the convention that summation over i = 1 to 3 is implied by a repeated index i.

Then, the three-dimensional Euler equations may be written as

∂w

∂t
+
∂fi

∂xi
= 0 in D, (32)

where

w =




ρ

ρu1
ρu2
ρu3
ρE



, fi =




ρui
ρuiu1 + pδi1
ρuiu2 + pδi2
ρuiu3 + pδi3

ρuiH




(33)
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and δij is the Kronecker delta function. Also,

p = (γ − 1) ρ

{
E −

1

2

(
u
2
i

)}
, (34)

and

ρH = ρE + p (35)

where γ is the ratio of the specific heats.

Consider a transformation to coordinates ξ1, ξ2, ξ3 where

Kij =

[
∂xi

∂ξj

]
, J = det (K) , K

−1
ij =

[
∂ξi

∂xj

]
,

and

Q = JK
−1
.

The elements of Q are the coefficients of K, and in a finite volume discretization they are

just the face areas of the computational cells projected in the x1, x2, and x3 directions.
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Also introduce scaled contravariant velocity components as

Ui = Qijuj.

The Euler equations can now be written as

∂W

∂t
+
∂Fi

∂ξi
= 0 in D, (36)

where

W = Jw,

and

Fi = Qijfj =




ρUi

ρUiu1 +Qi1p

ρUiu2 +Qi2p

ρUiu3 +Qi3p

ρUiH


 .

Assume now that the new computational coordinate system conforms to the wing in such

a way that the wing surface BW is represented by ξ2 = 0.
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Then the flow is determined as the steady state solution of equation (36) subject to the

flow tangency condition

U2 = 0 on BW. (37)

At the far field boundary BF , conditions are specified for incoming waves, as in the

two-dimensional case, while outgoing waves are determined by the solution.

The weak form of the Euler equations for steady flow can be written as

∫
D

∂φT

∂ξi
FidD =

∫
B
niφ

T
FidB, (38)

where the test vector φ is an arbitrary differentiable function and ni is the outward normal

at the boundary. If a differentiable solution w is obtained to this equation, it can be

integrated by parts to give ∫
D
φ
T ∂Fi

∂ξi
dD = 0.
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Suppose now that it is desired to control the surface pressure by varying the wing shape.

For this purpose, it is convenient to retain a fixed computational domain and then,

variations in the shape result in corresponding variations in the mapping derivatives defined

by K. Introduce the cost function

I =
1

2

∫ ∫
BW

(p− pd)
2
dξ1dξ3,

where pd is the desired pressure. The design problem is now treated as a control problem

where the control function is the wing shape, which is to be chosen to minimize I subject

to the constraints defined by the flow equations (36–). A variation in the shape will cause

a variation δp in the pressure and consequently a variation in the cost function

δI =

∫ ∫
BW

(p− pd) δp dξ1dξ3. (39)
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Since p depends on w through the equation of state (34–35), the variation δp can be

determined from the variation δw. Define the Jacobian matrices

Ai =
∂fi

∂w
, Ci = QijAj. (40)

The weak form of the equation for δw in the steady state becomes

∫
D

∂φT

∂ξi
δFidD =

∫
B
(niφ

T
δFi)dB,

where

δFi = Ciδw + δQijfj,

which should hold for any differential test function φ. This equation may be added to the

variation in the cost function, which may now be written as

δI =

∫ ∫
BW

(p− pd) δp dξ1dξ3−

∫
D

(
∂ψT

∂ξi
δFi

)
dD+

∫
B

(
niψ

T
δFi

)
dB. (41)
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On the wing surface BW , n1 = n3 = 0. Thus, it follows from equation (37) that

δF2 =




0

Q21δp

Q22δp

Q23δp

0



+




0

δQ21p

δQ22p

δQ23p

0



. (42)

Since the weak equation for δw should hold for an arbitrary choice of the test vector

φ, we are free to choose φ to simplify the resulting expressions. Therefore we set φ = ψ,

where the costate vector ψ is the solution of the adjoint equation

∂ψ

∂t
− C

T
i

∂ψ

∂ξi
= 0 in D. (43)
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At the outer boundary incoming characteristics for ψ correspond to outgoing characteristics

for δw. Consequently one can choose boundary conditions for ψ such that

niψ
T
Ciδw = 0.

Then, if the coordinate transformation is such that δQ is negligible in the far field, the

only remaining boundary term is

−

∫ ∫
BW

ψ
T
δF2 dξ1dξ3.

Thus, by letting ψ satisfy the boundary condition,

Q21ψ2 +Q22ψ3 +Q23ψ4 = (p− pd) on BW, (44)

we find finally that

δI = −

∫
D

∂ψT

∂ξi
δQijfjdD −

∫ ∫
BW

(δQ21ψ2 + δQ22ψ3 +Q23ψ4) p dξ1dξ3. (45)
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THE NAVIER STOKES EQUATIONS

∂w

∂t
+
∂fi

∂xi
=
∂fvi

∂xi
in D, (46)

where the state vector w, inviscid flux vector f and viscous flux vector fv are described

respectively by

w =




ρ

ρu1
ρu2
ρu3
ρE




, fi =




ρui
ρuiu1 + pδi1
ρuiu2 + pδi2
ρuiu3 + pδi3

ρuiH



, fvi =




0

σijδj1
σijδj2
σijδj3

ujσij + k ∂T
∂xi



. (47)

In these definitions, ρ is the density, u1, u2, u3 are the Cartesian velocity components, E

is the total energy and δij is the Kronecker delta function.
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The pressure is determined by the equation of state

p = (γ − 1) ρ

{
E −

1

2
(uiui)

}
,

and the stagnation enthalpy is given by

H = E +
p

ρ
,

where γ is the ratio of the specific heats. The viscous stresses may be written as

σij = µ

(
∂ui

∂xj
+
∂uj

∂xi

)
+ λδij

∂uk

∂xk
, (48)

where µ and λ are the first and second coefficients of viscosity. The coefficient of thermal

conductivity and the temperature are computed as

k =
cpµ

Pr
, T =

p

Rρ
. (49)
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It is also useful to consider a transformation to the computational coordinates (ξ1,ξ2,ξ3)

defined by the metrics

Kij =

[
∂xi

∂ξj

]
, J = det (K) , K

−1
ij =

[
∂ξi

∂xj

]
.

The Navier-Stokes equations can then be written in computational space as

∂ (Jw)

∂t
+
∂ (Fi − Fvi)

∂ξi
= 0 in D, (50)

where the inviscid and viscous flux contributions are now defined with respect to the

computational cell faces by Fi = Sijfj and Fvi = Sijfvj, and the quantity Sij = JK−1ij
represents the projection of the ξi cell face along the xj axis. In obtaining equation (50)

we have made use of the property that

∂Sij

∂ξi
= 0 . (51)
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FORMULATION OF THE OPTIMAL DESIGN PROBLEM FOR
THE NAVIER STOKES EQUATIONS

Suppose that the performance is measured by a cost function

I =

∫
B
M (w,S) dBξ +

∫
D
P (w, S) dDξ,

containing both boundary and field contributions where dBξ and dDξ are the surface and

volume elements in the computational domain. In general,M and P will depend on both

the flow variables w and the metrics S defining the computational space. In the case of

a multi-point design the flow variables may be separately calculated for several different

conditions of interest.

The design problem is now treated as a control problem where the boundary shape

represents the control function, which is chosen to minimize I subject to the constraints

defined by the flow equations (50).
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IMPLEMENTATION OF NAVIER-STOKES (EULER) DESIGN

The design procedures can be summarized as follows:

1. Solve the flow equations for ρ, u1, u2, u3, p.

2. Solve the adjoint equations for ψ subject to appropriate boundary conditions.

3. Evaluate G .

4. Project G into an allowable subspace that satisfies any geometric constraints.

5. Update the shape based on the direction of steepest descent.

6. Return to 1 until convergence is reached.

Practical implementation of the viscous design method relies heavily upon fast and

accurate solvers for both the state (w) and co-state (ψ) systems.
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SEARCH PROCEDURE

The search procedure used in this work is a simple descent method in which small steps

are taken in the negative gradient direction.

δF = −λG

can be regarded as simulating the time dependent process

dF

dt
= −G

where λ is the time step ∆t. Let A be the Hessian matrix with element

Aij =
∂Gi

∂Fj
=

∂2I

∂Fi∂Fj
.

79



Suppose that a locally minimum value of the cost function I∗ = I(F∗) is attained when

F = F∗. Then the gradient G∗ = G(F∗) must be zero, while the Hessian matrix

A∗ = A(F∗) must be positive definite. Since G∗ is zero, the cost function can be

expanded as a Taylor series in the neighborhood of F∗ with the form

I(F) = I
∗
+
1

2

(
F − F∗

)
A
(
F − F∗

)
+ . . .

Correspondingly,

G(F) = A
(
F − F∗

)
+ . . .

As F approaches F∗, the leading terms become dominant. Then, setting F̂ = (F−F∗),
the search process approximates

dF̂

dt
= −A∗F̂.

Also, since A∗ is positive definite it can be expanded as

A
∗
= RMR

T
,
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where M is a diagonal matrix containing the eigenvalues of A∗, and

RR
T
= R

T
R = I.

Setting

v = R
T F̂,

the search process can be represented as

dv

dt
= −Mv.

The stability region for the simple forward Euler stepping scheme is a unit circle centered

at −1 on the negative real axis. Thus for stability we must choose

µmax∆t = µmaxλ < 2,

while the asymptotic decay rate, given by the smallest eigenvalue, is proportional to

e
−µmint.
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In order to improve the rate of convergence, one can set

δF = −λPG,

where P is a preconditioner for the search. An ideal choice is P = A∗
−1

, so that the

corresponding time dependent process reduces to

dF̂

dt
= −F̂,

for which all the eigenvalues are equal to unity, and F̂ is reduced to zero in one time step

by the choice ∆t = 1.
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1. Quasi-Newton methods estimate A∗ from the change in the gradient during the search

process. This requires accurate estimates of the gradient at each time step. In order to

obtain these, both the flow solution and the adjoint equation must be fully converged.

Most quasi-Newton methods also require a line search in each search direction, for

which the flow equations and cost function must be accurately evaluated several times.

They have proven quite robust for aerodynamic optimization.

2. An alternative approach which has also proved successful in our previous work is

to smooth the gradient and to replace G by its smoothed value Ḡ in the descent

process. This both acts as a preconditioner, and ensures that each new shape in the

optimization sequence remains smooth.
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SMOOTHING THE GRADIENT

Independent movement of the boundary mesh points could produce discontinuities in the

designed shape. In order to prevent this the gradient may be smoothed. Suppose that the

shape is represented in term of smooth functions such as B-splines, so that

δF = Bd,

where d is the change of the spline coefficients. Then, using the discrete formulas, to first

order the change in the cost is

δI = GTδF = GTBd.

Thus the gradient with respect to the B-spline coefficients is obtained by multiplying G by

BT , and a descent step is defined by setting

d = −λBTG, δF = Bd = −λBBTG

where λ is sufficiently small and positive.
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IMPLICIT SMOOTHING

Implicit smoothing may also be used. To apply smoothing in the ξ1 direction, for example,

the smoothed gradient Ḡ ma be calculated from a discrete approximation to

Ḡ −
∂

∂ξ1
ε
∂

∂ξ1
Ḡ = G

where ε is the smoothing parameter. If one sets δF = −λḠ, then

δI = −

∫ ∫
GδF dξ1dξ3 = −λ

∫ ∫ (
Ḡ −

∂

∂ξ1
ε
∂Ḡ

∂ξ1

)
Ḡ dξ1dξ3

= −λ

∫ ∫ (
Ḡ2 + ε

(
∂Ḡ

∂ξ1

)2)
dξ1dξ3 < 0,

assuring an improvement if λ is sufficiently small and positive, unless the process has

already reached a stationary point at which G = 0.

This results in very large savings in the computational cost.
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COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
MPX5X WING-BODY

REN = 101.00  ,  MACH = 0.860  ,  CL = 0.610
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COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
MPX5X WING-BODY
REN = 101.00  ,  CL = 0.610
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COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
MPX5X WING-BODY
REN = 101.00  ,  CL = 0.610
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RAE 2822 DRAG REDUCTION                         
MACH   0.750    ALPHA  1.632                

CL    0.6449    CD    0.0091    CM   -0.1054    CLV   0.0001    CDV   0.0056

GRID  512X64    NDES       0   RES0.379E-01   GMAX 0.100E-05
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RAE 2822 DRAG REDUCTION                         
MACH   0.750    ALPHA  1.653                

CL    0.6510    CD    0.0054    CM   -0.0993    CLV   0.0000    CDV   0.0057

GRID  512X64    NDES       2   RES0.324E-01   GMAX 0.586E-02
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RAE 2822 DRAG REDUCTION                         
MACH   0.750    ALPHA  1.695                

CL    0.6478    CD    0.0041    CM   -0.0954    CLV   0.0000    CDV   0.0058

GRID  512X64    NDES       5   RES0.427E-01   GMAX 0.318E-02
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RAE 2822 DRAG REDUCTION                         
MACH   0.750    ALPHA  1.813                

CL    0.6460    CD    0.0041    CM   -0.0910    CLV   0.0000    CDV   0.0058

GRID  512X64    NDES      10   RES0.220E-01   GMAX 0.178E-02
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